8. Divergence, Curl and Potentials
Exercises
-
\(f=xyz\)
\[ \vec\nabla f =\left\langle \partial_x f,\partial_y f,\partial_z f\right\rangle \]
\(\vec\nabla f =\left\langle yz,xz,xy\right\rangle\)
\[\begin {aligned} \vec\nabla f &=\left\langle \partial_x(xyz),\partial_y(xyz),\partial_z(xyz)\right\rangle \\ &=\left\langle yz,xz,xy\right\rangle \\ \end{aligned}\]
-
\(f=x^2y^3z^4\)
\(\vec\nabla f =\left\langle 2xy^3z^4,3x^2y^2z^4,4x^2y^3z^3\right\rangle\)
\[\begin {aligned} \vec\nabla f &=\left\langle \partial_x(x^2y^3z^4),\partial_y(x^2y^3z^4),\partial_z(x^2y^3z^4)\right\rangle \\ &=\left\langle 2xy^3z^4,3x^2y^2z^4,4x^2y^3z^3\right\rangle \\ \end{aligned}\]
-
\(f=x^2+y^2+z^2\)
\(\vec\nabla f =\left\langle 2x,2y,2z\right\rangle\)
\[\begin {aligned} \vec\nabla f &=\left\langle \partial_x(x^2+y^2+z^2), \partial_y(x^2+y^2+z^2), \partial_z(x^2+y^2+z^2)\right\rangle \\ &=\left\langle 2x,2y,2z\right\rangle \\ \end{aligned}\]
-
\(f=z\sin x\cos y\)
\(\vec\nabla f =\left\langle z\cos x\cos y,-z\sin x\sin y,\sin x\cos y\right\rangle\)
\[\begin {aligned} \vec\nabla f &=\left\langle \partial_x(z\sin x\cos y), \partial_y(z\sin x\cos y), \partial_z(z\sin x\cos y)\right\rangle \\ &=\left\langle z\cos x\cos y,-z\sin x\sin y,\sin x\cos y\right\rangle \\ \end{aligned}\]
-
\(\vec F=\left\langle xy,yz,zx\right\rangle\)
\[ \vec\nabla\cdot\vec F =\partial_x F_1+\partial_y F_2+\partial_z F_3 \]
\(\vec\nabla\cdot\vec F=y+z+x\)
\[\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(xy)+\partial_y(yz)+\partial_z(zx) \\ &=y+z+x \end{aligned}\]
-
\(\vec F=\left\langle yz,xz,xy\right\rangle\)
\(\vec\nabla\cdot\vec F=0\)
\[\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(yz)+\partial_y(xz)+\partial_z(xy) \\ &=0+0+0=0 \end{aligned}\]
-
\(\vec F =\left\langle \dfrac{1}{2}z^2x,\dfrac{1}{2}x^2y,\dfrac{1}{2}y^2z\right\rangle\)
\(\vec\nabla\cdot\vec F =\dfrac{1}{2}(x^2+y^2+z^2)\)
\[\begin{aligned} \vec\nabla\cdot\vec F &=\dfrac{\partial}{\partial x}\left(\dfrac{1}{2}z^2x\right) +\dfrac{\partial}{\partial y}\left(\dfrac{1}{2}x^2y\right) +\dfrac{\partial}{\partial z}\left(\dfrac{1}{2}y^2z\right) \\ &=\dfrac{1}{2}(z^2+x^2+y^2) \end{aligned}\]
-
\(\vec F=\left\langle x\cos z,y\cos z,\sin z\right\rangle\)
\(\vec\nabla\cdot\vec F=3\cos z\)
\[\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(x\cos z)+\partial_y(y\cos z)+\partial_z(\sin z) \\ &=\cos z+\cos z+\cos z=3\cos z \end{aligned}\]
-
\(\vec F =\left\langle z\cos x\cos y,-z\sin x\sin y, \sin x\cos y\right\rangle\)
\(\vec\nabla\cdot\vec F=-2z\sin x\cos y\)
\[\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(z\cos x\cos y) +\partial_y(-z\sin x\sin y) \\ &\quad+\partial_z(\sin x\cos y) \\ &=-z\sin x\cos y-z\sin x\cos y+0 \\ &=-2z\sin x\cos y \end{aligned}\]
-
\(\vec F=\left\langle x^3,y^3,z^3\right\rangle\)
\(\vec\nabla\cdot\vec F=3x^2+3y^2+3z^2\)
\[\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(x^3)+\partial_y(y^3)+\partial_z(z^3) \\ &=3x^2+3y^2+3z^2 \end{aligned}\]
-
\(\vec F=\left\langle e^x,e^y,e^z\right\rangle\)
\(\vec\nabla\cdot\vec F=e^x+e^y+e^z\)
\[\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(e^x)+\partial_y(e^y)+\partial_z(e^z) \\ &=e^x+e^y+e^z \end{aligned}\]
-
\(\vec F=\left\langle \ln\left(\dfrac{x}{yz}\right), \ln\left(\dfrac{y}{xz}\right), \ln\left(\dfrac{z}{xy}\right)\right\rangle\)
\(\vec\nabla\cdot\vec F=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
\[\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x\ln\left(\dfrac{x}{yz}\right) +\partial_y\ln\left(\dfrac{y}{xz}\right) +\partial_z\ln\left(\dfrac{z}{xy}\right) \\ &=\dfrac{yz}{x}\dfrac{1}{yz} +\dfrac{xz}{y}\dfrac{1}{xz} +\dfrac{xy}{z}\dfrac{1}{xy} \\ &=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \end{aligned}\]
\[\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(\ln x-\ln y-\ln z) +\partial_y(\ln y-\ln x-\ln z) \\ &\quad+\partial_z(\ln z-\ln x-\ln y) \\ &=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z} \end{aligned}\]
-
Compute the divergence of the gradient of \(f=x^2y^3z^4\), i.e. \(\vec\nabla\cdot\vec\nabla f\).
\(\vec\nabla\cdot\vec\nabla f=2y^3z^4+6x^2yz^4+12x^2y^3z^2\)
The gradient of \(f\) is: \[ \vec\nabla f=\left\langle 2xy^3z^4, 3x^2y^2z^4, 4x^2y^3z^3\right\rangle \] Then the divergence of the gradient is: \[\begin{aligned} \vec\nabla\cdot\vec\nabla f &=\partial_x(2xy^3z^4)+\partial_y(3x^2y^2z^4)+\partial_z(4x^2y^3z^3) \\ &=2y^3z^4+6x^2yz^4+12x^2y^3z^2 \end{aligned}\]
The divergence of the gradient is an operation called the Laplacian, \(\nabla^2=\vec\nabla\cdot\vec\nabla\), which we will study on a later page. It can be computed directly using the formula: \[ \nabla^2f=\vec\nabla\cdot\vec\nabla f =\dfrac{d^2f}{dx^2}+\dfrac{d^2f}{dy^2}+\dfrac{d^2f}{dz^2} \]
-
Compute the divergence of the gradient of \(f=xyz\), i.e. \(\vec\nabla\cdot\vec\nabla f\).
The divergence of the gradient is an operation called the Laplacian, \(\nabla^2=\vec\nabla\cdot\vec\nabla\), which we will study on a later page. It can be computed directly using the formula: \[\begin{aligned} \nabla^2f&=\vec\nabla\cdot\vec\nabla f \\ &=\dfrac{d^2f}{dx^2}+\dfrac{d^2f}{dy^2}+\dfrac{d^2f}{dz^2} \\ &=\partial_x^2f+\partial_y^2f+\partial_z^2f \end{aligned}\]
\(\vec\nabla\cdot\vec\nabla(xyz)=0\)
The Laplacian is: \[\begin{aligned} \nabla^2f &=\vec\nabla\cdot\vec\nabla f \\ &=\partial_x^2f+\partial_y^2f+\partial_z^2f \end{aligned}\] We compute the Laplacian directly: \[\begin{aligned} \nabla^2(xyz) &=\vec\nabla\cdot\vec\nabla(xyz) \\ &=\partial_x^2(xyz)+\partial_y^2(xyz)+\partial_z^2(xyz) \\ &=0+0+0=0 \end{aligned}\]
-
\(\vec F=\left\langle xy,yz,zx\right\rangle\)
\[ \vec\nabla\times\vec F =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ F_1 & F_2 & F_3 \end{vmatrix} \]
\(\vec\nabla\times\vec F =\left\langle -y,-z,-x\right\rangle\)
\[\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ xy & yz & zx \end{vmatrix} \\ &=\hat\imath(0-y)-\hat\jmath(z-0)+\hat k(0-x) \\ &=\left\langle -y,-z,-x\right\rangle \end{aligned}\]
-
\(\vec F=\left\langle yz,xz,xy\right\rangle\)
\(\vec\nabla\times\vec F =\vec0\equiv\left\langle 0,0,0\right\rangle\)
\[\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ yz & xz & xy \end{vmatrix} \\ &=\hat\imath(x-x)-\hat\jmath(y-y)+\hat k(z-z) \\ &=\left\langle 0,0,0\right\rangle=\vec0 \end{aligned}\]
-
\(\vec F =\left\langle \dfrac{1}{2}z^2x,\dfrac{1}{2}x^2y, \dfrac{1}{2}y^2z\right\rangle\)
\(\vec\nabla\times\vec F =\left\langle yz,xz,xy\right\rangle\)
\[\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ \dfrac{1}{2}z^2x & \dfrac{1}{2}x^2y & \dfrac{1}{2}y^2z \end{vmatrix} \\ &=\hat\imath(yz-0)-\hat\jmath(0-zx)+\hat k(xy-0) \\ &=\left\langle yz,xz,xy\right\rangle \end{aligned}\]
-
\(\vec F=\left\langle x\cos z,y\cos z,\sin z\right\rangle\)
\(\vec\nabla\times\vec F =\left\langle y\sin z,-x\sin z,0\right\rangle\)
\[\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ x\cos z & y\cos z & \sin z \end{vmatrix} \\ &=\hat\imath(y\sin z)-\hat\jmath(0--x\sin z)+\hat k(0-0) \\ &=\left\langle y\sin z,-x\sin z,0\right\rangle \end{aligned}\]
-
\(\vec F =\left\langle z\cos x\cos y,-z\sin x\sin y, \sin x\cos y\right\rangle\)
\(\vec\nabla\times\vec F =\vec0\equiv\left\langle 0,0,0\right\rangle\)
\[\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ z\cos x\cos y & -z\sin x\sin y & \sin x\cos y \end{vmatrix} \\ &=\hat\imath(-\sin x\sin y--\sin x\sin y) \\ &\quad-\hat\jmath(\cos x\cos y-\cos x\cos y) \\ &\quad+\hat k(-z\cos x\sin y--z\cos x\sin y) \\ &=\left\langle 0,0,0\right\rangle=\vec0 \end{aligned}\]
-
\(\vec F=\left\langle -y,x,0\right\rangle\)
\(\vec\nabla\times\vec F =\left\langle 0,0,2\right\rangle\)
\[\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ -y & x & 0 \end{vmatrix} \\ &=\hat\imath(0-0)-\hat\jmath(0-0)+\hat k(1--1) \\ &=\left\langle 0,0,2\right\rangle \end{aligned}\]
-
\(\vec F=\left\langle e^{yz},e^{xz},e^{xy}\right\rangle\)
\(\vec\nabla\times\vec F =\left\langle x(e^{xy}-e^{xz}), y(e^{yz}-e^{xy}), z(e^{xz}-e^{yz})\right\rangle\)
\[\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ e^{yz} & e^{xz} & e^{xy} \end{vmatrix} \\ &=\hat\imath(xe^{xy}-xe^{xz}) -\hat\jmath(ye^{xy}-ye^{yz}) +\hat k(ze^{xz}-ze^{yz}) \\ &=\left\langle x(e^{xy}-e^{xz}), y(e^{yz}-e^{xy}), z(e^{xz}-e^{yz})\right\rangle \end{aligned}\]
-
\(\vec F=\left\langle \ln\left(\dfrac{x}{yz}\right), \ln\left(\dfrac{y}{xz}\right), \ln\left(\dfrac{z}{xy}\right)\right\rangle\)
\(\vec\nabla\times\vec F= =\left\langle \dfrac{1}{z}-\,\dfrac{1}{y}, \dfrac{1}{x}-\,\dfrac{1}{z}, \dfrac{1}{y}-\,\dfrac{1}{x}\right\rangle\)
\[\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ \ln x-\ln y-\ln z & \ln y-\ln x-\ln z & \ln z-\ln x-\ln y \end{vmatrix} \\ &=\hat\imath\left(-\,\dfrac{1}{y}--\,\dfrac{1}{z}\right) -\hat\jmath\left(-\,\dfrac{1}{x}--\,\dfrac{1}{z}\right) +\hat k \left(-\,\dfrac{1}{x}--\,\dfrac{1}{y}\right) \\ &=\left\langle \dfrac{1}{z}-\,\dfrac{1}{y}, \dfrac{1}{x}-\,\dfrac{1}{z}, \dfrac{1}{y}-\,\dfrac{1}{x}\right\rangle \end{aligned}\]
-
Compute the curl of the gradient of \(f=x^2y^3z^4\), i.e. \(\vec\nabla\times\vec\nabla f\).
\(\vec\nabla\times\vec\nabla(x^2y^3z^4)=\vec0\equiv\left\langle 0,0,0\right\rangle\)
The gradient of \(f\) is: \[ \vec\nabla f=\left\langle 2xy^3z^4, 3x^2y^2z^4, 4x^2y^3z^3\right\rangle \] Then the curl of the gradient is: \[\begin{aligned} \vec\nabla\times\vec\nabla f &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ 2xy^3z^4 & 3x^2y^2z^4 & 4x^2y^3z^3 \end{vmatrix} \\ &=\hat\imath(12x^2y^2z^3-12x^2y^2z^3) \\ &\quad-\hat\jmath(8xy^3z^3-8xy^3z^3) \\ &\quad+\hat k (6xy^2z^4-6xy^2z^4) \\ &=\left\langle 0,0,0\right\rangle=\vec0 \end{aligned}\]
-
Compute the curl of the gradient of \(f=xyz\), i.e. \(\vec\nabla\times\vec\nabla f\).
\(\vec\nabla\times\vec\nabla(xyz)=\vec0\equiv\left\langle 0,0,0\right\rangle\)
The gradient of \(f\) is: \[ \vec\nabla f=\left\langle yz, xz, xy\right\rangle \] Then the curl of the gradient is: \[\begin{aligned} \vec\nabla\times\vec\nabla f &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ yz & xz & xy \end{vmatrix} \\ &=\hat\imath(x-x)-\hat\jmath(y-y)+\hat k(z-z) \\ &=\left\langle 0,0,0\right\rangle=\vec0 \end{aligned}\]
It is no coincidence that the curl of the gradient is \(\vec0\) in both this and the previous problem. We will see on a later page that \(\vec\nabla\times\vec\nabla f=\vec0\) for any function \(f\).
-
Compute the divergence of the curl of \(\vec F=\left\langle xy,yz,zx\right\rangle\), i.e. \(\vec\nabla\cdot\vec\nabla\times\vec F\).
\(\vec\nabla\cdot\vec\nabla\times\left\langle xy,yz,zx\right\rangle =0\)
The curl of \(\vec F\) is: \[ \vec\nabla\times\vec F =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ xy & yz & zx \end{vmatrix} =\left\langle -y,-z,-x\right\rangle \] Then the divergence of the curl is: \[\begin{aligned} \vec\nabla\cdot\vec\nabla\times\vec F &=\partial_x(-y)+\partial_y(-z)+\partial_z(-x) \\ &=0+0+0=0 \end{aligned}\]
-
Compute the divergence of the curl of \(\vec F=\left\langle e^{yz},e^{xz},e^{xy}\right\rangle\), i.e. \(\vec\nabla\cdot\vec\nabla\times\vec F\).
\(\vec\nabla\cdot\vec\nabla\times\vec F=0\)
The curl of \(\vec F\) is: \[\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ e^{yz} & e^{xz} & e^{xy} \end{vmatrix} \\ &=\left\langle x(e^{xy}-e^{xz}), y(e^{yz}-e^{xy}), z(e^{xz}-e^{yz})\right\rangle \end{aligned}\] Then the divergence of the curl is: \[\begin{aligned} \vec\nabla\cdot\vec\nabla\times\vec F &=\partial_x[x(e^{xy}-e^{xz})] \\ &\quad+\partial_y[y(e^{yz}-e^{xy})] \\ &\quad+\partial_z[z(e^{xz}-e^{yz})] \\ &=[(e^{xy}-e^{xz})+x(ye^{xy}-ze^{xz})] \\ &\quad+[(e^{yz}-e^{xy})+y(ze^{yz}-xe^{xy})] \\ &\quad+[(e^{xz}-e^{yz})+z(xe^{xz}-ye^{yz})] \\ &=0 \end{aligned}\]
It is no coincidence that the divergence of the curl is \(0\) in both this and the previous problem. We will see on a later page that \(\vec\nabla\cdot\vec\nabla\times\vec F=0\) for any vector field \(\vec F\).
-
Compute the curl of the curl of \(\vec F=\left\langle xy,yz,zx\right\rangle\), i.e. \(\vec\nabla\times\vec\nabla\times\vec F\).
\(\vec\nabla\times\vec\nabla\times\left\langle xy,yz,zx\right\rangle =\left\langle 1,1,1\right\rangle\)
The curl of \(\vec F\) is: \[ \vec\nabla\times\vec F =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ xy & yz & zx \end{vmatrix} =\left\langle -y,-z,-x\right\rangle \] Then the curl of the curl is: \[\begin{aligned} \vec\nabla\times\vec\nabla\times\vec F =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ -y & -z & -x \end{vmatrix} =\left\langle 1,1,1\right\rangle \end{aligned}\]
Although there is an identity for the curl of the curl which we will learn on a later page, it is not very useful in computations.
-
If \(f=2x\cos z\) and \(g=2y\sin z\), compute \(\vec\nabla(fg)\) in two ways.
-
Find \(f\vec\nabla g\) and \(g\vec\nabla f\) and add them to get \(\vec\nabla(fg)\).
\(\begin{aligned} \vec\nabla(fg) &=\left\langle 2y\sin(2z),2x\sin(2z),4xy\cos(2z)\right\rangle \\ &=\left\langle 4y\sin z\cos z,4x\sin z\cos z,4xy\cos^2 z-4xy\sin^2 z\right\rangle \end{aligned}\)
\[\begin{aligned} f\vec\nabla g &=2x\cos z\left\langle 0,2\sin z,2y\cos z\right\rangle \\ &=\left\langle 0,4x\sin z\cos z,4xy\cos^2 z\right\rangle \\[6pt] g\vec\nabla f &=2y \sin z\left\langle 2\cos z,0,-2x\sin z\right\rangle \\ &=\left\langle 4y\sin z\cos z,0,-4xy\sin^2 z\right\rangle \\[6pt] \vec\nabla(fg) &=f\vec\nabla g+g\vec\nabla f \\ &=\left\langle 4y\sin z\cos z,4x\sin z\cos z,4xy\cos^2 z-4xy\sin^2 z\right\rangle \end{aligned}\]
-
Find \(fg\) and then \(\vec\nabla(fg)\).
\(\begin{aligned} \vec\nabla(fg) &=\left\langle 2y\sin(2z),2x\sin(2z),4xy\cos(2z)\right\rangle \\ &=\left\langle 4y\sin z\cos z,4x\sin z\cos z,4xy\cos^2 z-4xy\sin^2 z\right\rangle \end{aligned}\)
\[\begin{aligned} fg&=4xy\cos z\sin z=2xy\sin(2z) \\[6pt] \vec\nabla(fg) &=\left\langle 2y\sin(2z),2x\sin(2z),4xy\cos(2z)\right\rangle \\ &=\left\langle 4y\sin z\cos z,4x\sin z\cos z,4xy\cos^2 z-4xy\sin^2 z\right\rangle \end{aligned}\]
-
-
At a point \(P\), we know: \[\begin{aligned} f&=3\qquad& \vec\nabla f&=\left\langle -2,1,3\right\rangle \\ g&=2\qquad& \vec\nabla g&=\left\langle 2,-1,4\right\rangle \end{aligned}\] Find \(\vec\nabla(fg)\) at \(P\).
\(\vec\nabla(fg) =\left\langle 2,-1,18\right\rangle\)
Using the formula, we have: \[\begin{aligned} \vec\nabla(fg) &=f\vec\nabla g+g\vec\nabla f \\ &=3\left\langle 2,-1,4\right\rangle+2\left\langle -2,1,3\right\rangle \\ &=\left\langle 6,-3,12\right\rangle+\left\langle -4,2,6\right\rangle \\ &=\left\langle 2,-1,18\right\rangle \end{aligned}\]
-
If \(f=xyz\) and \(\vec G=\left\langle xz,yz,z^2\right\rangle\), compute \(\vec\nabla\cdot (f\vec G)\) in two ways.
-
Find \((\vec\nabla f)\cdot\vec G\) and \(f\vec\nabla\cdot\vec G\) and add them to get \(\vec\nabla\cdot(f\vec G)\).
\(\vec\nabla\cdot(f\vec G) =7xyz^2\)
\[\begin{aligned} \vec\nabla f &=\left\langle yz,xz,xy\right\rangle \\ (\vec\nabla f)\cdot\vec G &=xyz^2+xyz^2+xyz^2=3xyz^2 \\[6pt] \vec\nabla\cdot\vec G &=z+z+2z=4z \\ f\vec\nabla\cdot\vec G &=4xyz^2 \\[6pt] \vec\nabla\cdot(f\vec G) &=(\vec\nabla f)\cdot\vec G +f\vec\nabla\cdot\vec G \\ &=3xyz^2+4xyz^2=7xyz^2 \end{aligned}\]
-
Find \(f\vec G\) and then \(\vec\nabla\cdot(f\vec G)\).
\(\vec\nabla\cdot(f\vec G) ==7xyz^2\)
\[\begin{aligned} f\vec G &=xyz\left\langle xz,yz,z^2\right\rangle \\ &=\left\langle x^2yz^2,xy^2z^2,xyz^3\right\rangle \\[6pt] \vec\nabla\cdot(f\vec G) &=2xyz^2+2xyz^2+3xyz^2=7xyz^2 \end{aligned}\]
-
-
At a point \(P\), we know: \[\begin{aligned} \vec F&=\left\langle 4,-2,1\right\rangle\qquad& \vec\nabla\times\vec F&=\left\langle 2,3,-2\right\rangle \\ \vec G&=\left\langle 1,-3,2\right\rangle\qquad& \vec\nabla\times\vec G&=\left\langle -2,1,4\right\rangle \end{aligned}\] Find \(\vec\nabla\cdot(\vec F\times\vec G)\) at \(P\).
\(\vec\nabla\cdot(\vec F\times\vec G) =-5\)
Using the formula, we have: \[\begin{aligned} \vec\nabla\cdot(\vec F\times\vec G) &=\vec\nabla\times\vec F\cdot\vec G-\vec F\cdot\vec\nabla\times\vec G \\ &=\left\langle 2,3,-2\right\rangle\cdot\left\langle 1,-3,2\right\rangle -\left\langle 4,-2,1\right\rangle\cdot\left\langle -2,1,4\right\rangle \\ &=(2-9-4)-(-8-2+4)=-5 \end{aligned}\]
-
If \(f=xyz\) and \(\vec G=\left\langle -yz,xz,z^2\right\rangle\), compute \(\vec\nabla\times (f\vec G)\) in two ways.
-
Find \((\vec\nabla f)\times\vec G\) and \(f\vec\nabla\times\vec G\) and add them to get \(\vec\nabla\times(f\vec G)\).
\(\vec\nabla\times(f\vec G) =\left\langle xz^3-2x^2yz,-yz^3-2xy^2z,4xyz^2\right\rangle\)
\[\begin{aligned} \vec\nabla f &=\left\langle yz,xz,xy\right\rangle \\[6pt] (\vec\nabla f)\times\vec G &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ yz & xz & xy \\ -yz & xz & z^2 \end{vmatrix} \\ &=\hat\imath(xz^3-x^2yz)-\hat\jmath(yz^3--xy^2z) \\ &\quad+\hat k(xyz^2--xyz^2) \\ &=\left\langle xz^3-x^2yz,-yz^3-xy^2z,2xyz^2\right\rangle \\[6pt] \vec\nabla\times\vec G &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ -yz & xz & z^2 \end{vmatrix} \\ &=\hat\imath(0-x)-\hat\jmath(0--y) +\hat k(z--z) \\ &=\left\langle -x,-y,2z\right\rangle \\[6pt] f\vec\nabla\times\vec G &=\left\langle -x^2yz,-xy^2z,2xyz^2\right\rangle \\[6pt] \vec\nabla\times(f\vec G) &=(\vec\nabla f)\times\vec G +f\vec\nabla\times\vec G \\ &=\left\langle xz^3-2x^2yz,-yz^3-2xy^2z,4xyz^2\right\rangle \end{aligned}\]
-
Find \(f\vec G\) and then \(\vec\nabla\times(f\vec G)\).
\(\vec\nabla\times(f\vec G) =\left\langle xz^3-2x^2yz,-yz^3-2xy^2z,4xyz^2\right\rangle\)
\[\begin{aligned} f\vec G &=\left\langle -xy^2z^2,x^2yz^2,xyz^3\right\rangle \\[6pt] \vec\nabla\times(f\vec G) &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ -xy^2z^2 & x^2yz^2 & xyz^3 \end{vmatrix} \\ &=\hat\imath(xz^3-2x^2yz)-\hat\jmath(yz^3--2xy^2z) +\hat k(2xyz^2--2xyz^2) \\ &=\left\langle xz^3-2x^2yz,-yz^3-2xy^2z,4xyz^2\right\rangle \end{aligned}\]
-
-
At a point \(P\), we know: \[\begin{aligned} f&=3\qquad& \vec\nabla f&=\left\langle 3,4,5\right\rangle \\ \vec G&=\left\langle -3,2,4\right\rangle\qquad& \vec\nabla\times\vec G&=\left\langle 2,-1,3\right\rangle \end{aligned}\] Find \(\vec\nabla\times(f\vec G)\) at \(P\).
\(\vec\nabla\times(f\vec G) =\left\langle 12,-30,27\right\rangle\)
\[\begin{aligned} (\vec\nabla f)\times\vec G &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ 3 & 4 & 5 \\ -3 & 2 & 4 \end{vmatrix} \\ &=\hat\imath(16-10)-\hat\jmath(12+15)+\hat k(6+12) \\ &=\left\langle 6,-27,18\right\rangle \\[6pt] f\vec\nabla\times\vec G &=3\left\langle 2,-1,3\right\rangle =\left\langle 6,-3,9\right\rangle \\[6pt] \vec\nabla\times(f\vec G) &=(\vec\nabla f)\times\vec G +f\vec\nabla\times\vec G \\ &=\left\langle 12,-30,27\right\rangle \end{aligned}\]
-
If \(f=\sin x\cos y\), compute the Laplacian \(\nabla^2f\) and show it satisfies \(\nabla^2f=-2f\).
\(\nabla^2f=-2\sin x\cos y=-2f\)
\[\begin{aligned} \nabla^2f &=\partial_x^2(\sin x\cos y)+\partial_y^2(\sin x\cos y) \\ &=\partial_x(\cos x\cos y)+\partial_y(-\sin x\sin y) \\ &=-\sin x\cos y-\sin x\cos y=-2\sin x\cos y=-2f \\ \end{aligned}\]
-
If \(f=x^2+y^2-2z^2\), compute the Laplacian \(\nabla^2f\) and show it satisfies the Laplace equation \(\nabla^2f=0\).
\(\nabla^2f=0\)
\[\begin{aligned} \nabla^2f &=\partial_x^2(x^2+y^2-2z^2)+\partial_y^2(x^2+y^2-2z^2)+\partial_z^2(x^2+y^2-2z^2) \\ &=\partial_x(2x)+\partial_y(2y)+\partial_z(-4z) \\ &=2+2-4=0 \\ \end{aligned}\]
-
If \(f=z\sin x\cos y\), compute the curl of the gradient of \(f\), i.e. \(\vec\nabla\times\vec\nabla f\).
\(\vec\nabla\times\vec\nabla f=\vec0\)
For any function: \[ \vec\nabla\times\vec\nabla f=\vec0 \]
-
If \(\vec F=\left\langle y\sin z,x\cos z,xy\right\rangle\), compute the divergence of the curl of \(\vec F\), i.e. \(\vec\nabla\cdot\vec\nabla\times\vec F\).
\(\vec\nabla\cdot\vec\nabla\times\vec F=0\)
For any vector field: \[ \vec\nabla\cdot\vec\nabla\times\vec F=0 \]
-
Verify that \(F=\cos^2 x\) and \(G=-\sin^2 x\) are both antiderivatives of \(f=-2\sin x\cos x\). Why is this possible?
By chain rule: \[F'=2(\cos x)(-\sin x)=-2\sin x\cos x\] Similarly: \[G'=-2(\sin x)(\cos x)=-2\sin x\cos x\] This is possible because \(F\) and \(G\) differ by a constant: \[\cos^2 x=-\sin^2 x +1\]
-
Verify that \(f=xy^2z^3\) is a scalar potential for \(\vec F=\left\langle y^2z^3,2xyz^3,3xy^2z^2\right\rangle\)
The gradient of \(f=xy^2z^3\) is: \[ \vec\nabla f=\left\langle y^2z^3,2xyz^3,3xy^2z^2\right\rangle=\vec F \]
-
Verify that \(f=z\sin x\cos y\) is a scalar potential for \(\vec F=\left\langle z\cos x\cos y,-z\sin x\sin y,\sin x\cos y\right\rangle\)
The gradient of \(f=z\sin x\cos y\) is: \[ \vec\nabla f =\left\langle z\cos x\cos y,-z\sin x\sin y,\sin x\cos y\right\rangle =\vec F \]
-
Verify that \(\vec A=\langle xy,yz,zx\rangle\) is a vector potential for \(\vec F=\left\langle -y,-z,-x\right\rangle\)
The curl of \(\vec A=\left\langle yz,xz,xy\right\rangle\) is: \[\begin{aligned} \vec\nabla\times\vec A &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ xy & yz & zx \end{vmatrix} \\ &=\left\langle 0-y,0-z,0-x\right\rangle=\vec F \end{aligned}\]
-
Verify that \(\vec A=\left\langle z\sin y,x\sin z,y\sin x\right\rangle\) and \(\vec A=\left\langle z\sin y-yz\cos x,x\sin z-z\sin x,0\right\rangle\) are both vector potentials for \(\vec F=\left\langle \sin x-x\cos z,\sin y-y\cos x,\sin z-z\cos y\right\rangle\)
The curl of \(\vec A=\left\langle x\sin y,y\sin z,z\sin x\right\rangle\) is: \[\begin{aligned} \vec\nabla&\times\vec A =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ z\sin y & x\sin z & y\sin x \end{vmatrix} \\ &=\left\langle \sin x-x\cos z,\sin y-y\cos x,\sin z-z\cos y\right\rangle \\ &=\vec F \end{aligned}\]
The curl of \(\vec A=\left\langle z\sin y-yz\cos x,x\sin z-z\sin x,0\right\rangle\) is: \[\begin{aligned} \vec\nabla&\times\vec A =\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ z\sin y-yz\cos x & x\sin z-z\sin x & 0 \end{vmatrix} \\ &=\left\langle -x\cos z+\sin x,\sin y-y\cos x,\right. \\ &\qquad\qquad\qquad\left.\sin z-z\cos x-z\cos y+z\cos x\right\rangle \\ &=\left\langle \sin x-x\cos z,\sin y-y\cos x,\sin z-z\cos y\right\rangle \\ &=\vec F \end{aligned}\]
-
\(\vec F=\left\langle y+z,x+z,x+y\right\rangle\)
A scalar potential for \(\vec F\) is any function \(f\) satisfying \(\vec\nabla f=\vec F\). Solve the equations: \[ \partial_x f=F_1 \qquad \partial_y f=F_2 \qquad \partial_z f=F_3 \] for a single function \(f\).
\(f=xy+xz+yz\)
We solve: \[ \partial_x f=y+z \qquad \partial_y f=x+z \qquad \partial_z f=x+y \] The \(x\)-antiderivative of the \(1^\text{st}\) equation is: \[ f=xy+xz+g(y,z) \] The \(y\)-antiderivative of the \(2^\text{nd}\) equation is: \[ f=xy+yz+h(x,z) \] The \(z\)-antiderivative of the \(3^\text{rd}\) equation is: \[ f=xz+yz+k(x,y) \] A scalar potential which satisfies all three conditions is: \[ f=xy+xz+yz \] where \(g(y,z)=yz\), \(h(x,z)=xz\) and \(k(x,y)=xy\).
-
\(\vec F=\left\langle yz\cos(xyz),xz\cos(xyz),xy\cos(xyz)\right\rangle\)
\(f=\sin(xyz)\)
We solve: \[ \partial_x f=yz\cos(xyz) \qquad \partial_y f=xz\cos(xyz) \qquad \partial_z f=xy\cos(xyz) \] The \(x\)-antiderivative of the \(1^\text{st}\) equation, the \(y\)-antiderivative of the \(2^\text{nd}\) equation and the \(z\)-antiderivative of the \(3^\text{rd}\) equation are all: \[ f=\sin(xyz) \] which is therefore the scalar potential.
-
\(\vec F=\left\langle y^2+2xz,2xy-3y^2z,x^2-y^3-2z\right\rangle\)
Successively solve the equations: \[ \partial_x f=F_1 \qquad \partial_y f=F_2 \qquad \partial_z f=F_3 \] If you reach a contradiction, there is no solution.
\(f=xy^2+x^2z-y^3z-z^2+C\)
We solve: \[ \partial_x f=y^2+2xz \qquad \partial_y f=2xy-3y^2z \qquad \partial_z f=x^2-y^3-2z \] The \(x\)-antiderivative of the \(1^\text{st}\) equation is: \[ f=xy^2+x^2z+g(y,z) \] This needs to satisfy the the \(2^\text{nd}\) equation. So we compute \(\partial_y f\) and plug into the \(2^\text{nd}\) equation: \[ 2xy+\partial_y g=2xy-3y^2z \qquad \text{or} \qquad \partial_y g=-3y^2z \] The solution is \(g(y,z)=-y^3z+h(z)\). So: \[ f=xy^2+x^2z-y^3z+h(z) \] This needs to satisfy the the \(3^\text{rd}\) equation. So we compute \(\partial_z f\) and plug into the \(3^\text{rd}\) equation: \[ x^2-y^3+h'(z)=x^2-y^3-2z \qquad \text{or} \qquad h'(z)=-2z \] A solution is \(h(z)=-z^2+C\). So a scalar potential is: \[ f=xy^2+x^2z-y^3z-z^2+C \]
-
\(\vec F=\left\langle y^2+2xz,2xy+3y^2z,x^2-y^3-2z\right\rangle\)
There is no scalar potential. The contradiction is shown in the solution and in the remark.
We solve: \[ \partial_x f=y^2+2xz \qquad \partial_y f=2xy+3y^2z \qquad \partial_z f=x^2-y^3-2z \] The \(x\)-antiderivative of the \(1^\text{st}\) equation is: \[ f=xy^2+x^2z+g(y,z) \] This needs to satisfy the the \(2^\text{nd}\) equation. So we compute \(\partial_y f\) and plug into the \(2^\text{nd}\) equation: \[ 2xy+\partial_y g=2xy+3y^2z \qquad \text{or} \qquad \partial_y g=3y^2z \] The solution is \(g(y,z)=y^3z+h(z)\). So: \[ f=xy^2+x^2z+y^3z+h(z) \] This needs to satisfy the the \(3^\text{rd}\) equation. So we compute \(\partial_z f\) and plug into the \(3^\text{rd}\) equation: \[ x^2+y^3+h'(z)=x^2-y^3-2z \qquad \text{or} \qquad h'(z)=-2y^3-2z \] This is a contradiction because \(h\) cannot be a function of \(y\). So there is no scalar potential.
To verify there is no scalar potential, we compute the curl: \[\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ y^2+2xz & 2xy+3y^2z & x^2-y^3-2z \end{vmatrix} \\ &=\hat\imath(-3y^2-3y^2) -\hat\jmath(2x-2x) +\hat k (2y-2y) \\ &=\left\langle -6y^2,0,0\right\rangle \end{aligned}\] Since this is not \(\vec0\), there cannot be a scalar potential.
-
\(\vec F=\left\langle \cos x\cos y,\sin x\sin y,\sec^2 z\right\rangle\)
There is no scalar potential, since the curl of \(\vec F\) is not \(\vec0\).
We first compute the curl: \[\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ \cos x\cos y & \sin x\sin y & \sec^2 z \end{vmatrix} \\ &=\hat\imath(0-0) -\hat\jmath(0-0) +\hat k (\cos x\sin y+\cos x\sin y)\\ &=\left\langle 0,0,2\cos x\sin y\right\rangle \end{aligned}\] Since this is not \(\vec0\), there is no scalar potential.
-
\(\vec F=\left\langle \cos x\cos y,-\sin x\sin y,\sec^2 z\right\rangle\)
\(f=\sin x\cos y+\tan z\)
We first compute the curl: \[\begin{aligned} \vec\nabla\times\vec F &=\begin{vmatrix} \hat\imath & \hat\jmath & \hat k \\ \partial_x & \partial_y & \partial_z \\ \cos x\cos y & -\sin x\sin y & \sec^2 z \end{vmatrix} \\ &=\hat\imath(0-0) -\hat\jmath(0-0) +\hat k (-\cos x\sin y+\cos x\sin y) =\vec0 \end{aligned}\] Since this is \(\vec0\), we expect there is a potential and solve: \[ \partial_x f=\cos x\cos y \qquad \partial_y f=-\sin x\sin y \qquad \partial_z f=\sec^2 z \] The \(x\)-antiderivative of the \(1^\text{st}\) equation is: \[ f=\sin x\cos y+g(y,z) \] This needs to satisfy the the \(2^\text{nd}\) equation. So we compute \(\partial_y f\) and plug into the \(2^\text{nd}\) equation: \[ -\sin x\sin y+\partial_y g=-\sin x\sin y \qquad \text{or} \qquad \partial_y g=0 \] The solution is \(g(y,z)=h(z)\). (Don't say \(g=0\) or you will not get a solution!) So: \[ f=\sin x\cos y+h(z) \] This needs to satisfy the the \(3^\text{rd}\) equation. So we compute \(\partial_z f\) and plug into the \(3^\text{rd}\) equation: \[ h'(z)=\sec^2 z \qquad \text{or} \qquad h(z)=\tan z \] Therefore, a scalar potential is: \[ f=\sin x\cos y+\tan z \]
In this case, computing the curl was a waste of time. But we could not know this in advance!
-
\(\vec F=\left\langle -x,y,y-x\right\rangle\)
A vector potential for \(\vec F=\left\langle F_1,F_2,F_3\right\rangle\) is any vector field \(\vec A=\left\langle A_1,A_2,A_3\right\rangle\) satisfying \(\vec\nabla\times\vec A=\vec F\). So we need to solve the equations: \[\begin{aligned} \partial_y A_3-\partial_z A_2&=F_1 \\ \partial_z A_1-\partial_x A_3&=F_2 \\ \partial_x A_2-\partial_y A_1&=F_3 \end{aligned}\] for \(A_1\), \(A_2\) and \(A_3\). There is always a solution with \(A_3=0\). So we actually need to solve: \[\begin{aligned} \partial_z A_2&=-F_1 \\ \partial_z A_1&=F_2 \\ \partial_x A_2-\partial_y A_1&=F_3 \end{aligned}\]
\(\vec A=\left\langle yz+xy,xz+xy,0\right\rangle\)
There are many other solutions.We assume \(A_3=0\). So we need to solve: \[\begin{aligned} \partial_z A_2&=-F_1=x \\ \partial_z A_1&=F_2=y \\ \partial_x A_2-\partial_y A_1&=F_3=y-x \end{aligned}\] The first \(2\) equations say: \[ A_2=xz+f(x,y) \qquad A_1=yz+g(x,y) \] We substitute into the \(3^\text{rd}\) equation: \[ z+\partial_x f-z-\partial_y g=y-x \] One solution is \(f=xy\) and \(g=xy\). So \[ \vec A=\left\langle yz+xy,xz+xy,0\right\rangle \] There are many other solutions.
-
\(\vec F=\left\langle x\cos z,y\cos z,2x-2\sin z\right\rangle\)
Successively solve the equations: \[\begin{aligned} \partial_z A_2&=-F_1 \\ \partial_z A_1&=F_2 \\ \partial_x A_2-\partial_y A_1&=F_3 \end{aligned}\] If you reach a contradiction, there is no solution.
\(\vec A=\left\langle y\sin z,-x\sin z+x^2,0\right\rangle\)
There are many other solutions.We assume \(A_3=0\). So we need to solve: \[\begin{aligned} \partial_z A_2&=-F_1=-x\cos z \\ \partial_z A_1&=F_2=y\cos z \\ \partial_x A_2-\partial_y A_1&=F_3=2x-2\sin z \end{aligned}\] The first \(2\) equations say: \[ A_2=-x\sin z+f(x,y) \qquad A_1=y\sin z+g(x,y) \] We substitute into the \(3^\text{rd}\) equation: \[ -\sin z+\partial_x f-\sin z-\partial_y g=2x-2\sin z \qquad \text{or} \qquad \partial_x f-\partial_y g=2x \] One solution is \(f=x^2\) and \(g=0\). So \[ \vec A=\left\langle y\sin z,-x\sin z+x^2,0\right\rangle \] There are many other solutions.
-
\(\vec F=\left\langle x\cos z,y\cos z,2x-\sin z\right\rangle\)
There is no vector potential. The contradiction is shown in the solution and in the remark.
We assume \(A_3=0\). So we need to solve: \[\begin{aligned} \partial_z A_2&=-F_1=-x\cos z \\ \partial_z A_1&=F_2=y\cos z \\ \partial_x A_2-\partial_y A_1&=F_3=2x-\sin z \end{aligned}\] The first \(2\) equations say: \[ A_2=-x\sin z+f(x,y) \qquad A_1=y\sin z+g(x,y) \] We substitute into the \(3^\text{rd}\) equation: \[ -\sin z+\partial_x f-\sin z-\partial_y g=2x-\sin z \qquad \text{or} \qquad \partial_x f-\partial_y g=2x+\sin z \] This is a contradiction because \(f\) and \(g\) cannot be functions of \(z\). So there is no vector potential.
To verify there is no vector potential, we compute the divergence: \[\begin{aligned} \vec\nabla\cdot\vec F &=\partial_x(x\cos z)+\partial_y(y\cos z)+\partial_z(2x-\sin z) \\ &=\cos z+\cos z-\cos z=\cos z \ne 0 \end{aligned}\] Since this is not \(0\), there cannot be a vector potential.
-
\(\vec F=\left\langle yz,xz,xy\right\rangle\)
\(\vec A =\left\langle \dfrac{xz^2}{2},-\,\dfrac{yz^2}{2}+\dfrac{x^2y}{2},0\right\rangle\)
We first compute the divergence: \[ \vec\nabla\cdot\vec F =\partial_x(yz)+\partial_y(xz)+\partial_z(xy) =0+0+0=0 \] Since this is 0, we expect there is a potential and solve: \[\begin{aligned} \partial_z A_2&=-F_1=-yz \\ \partial_z A_1&=F_2=xz \\ \partial_x A_2-\partial_y A_1&=F_3=xy \end{aligned}\] The first \(2\) equations say: \[ A_2=-\,\dfrac{yz^2}{2}+f(x,y) \qquad A_1=\dfrac{xz^2}{2}+g(x,y) \] We substitute into the \(3^\text{rd}\) equation: \[ \partial_x f-\partial_y g=xy \] A solution is \(f=\dfrac{x^2y}{2}\) and \(g=0\). So a vector potential is: \[ \vec A =\left\langle \dfrac{xz^2}{2},-\,\dfrac{yz^2}{2}+\dfrac{x^2y}{2},0\right\rangle \]
-
\(\vec F=\left\langle x,y,z\right\rangle\)
There is no vector potential because \(\vec\nabla\cdot\vec F=3\ne0\).
We first compute the divergence: \[ \vec\nabla\cdot\vec F =\partial_x(x)+\partial_y(y)+\partial_z(z) =1+1+1=3 \] Since this is not \(0\), there is no vector potential.
PY: Checked to here.
-
PY: Add the last problem from Edfinity Stokes.>
xxx
xxx
xxx
-
Q1
xxx
xxx
xxx
Compute the gradient of each scalar field.
Compute the divergence of each vector field.
Compute the curl of each vector field.
Find a scalar potential for each vector field or show one does not exist.
Find a vector potential for each vector field or show one does not exist.
Review Exercises
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum